

For
Dr. H.G. Savage ANT 415 Y
Borden Bldg. F.O. Lab by
Natalie Watson
830859320
May 5, 1988

Table of Contents

Text
Pages
Introduction 1-8
Faunal Findings 8-10
Seasonality 10-12
Inter-site, Inter-cultural Comparisons 12
Zoological Aspects of Faunal Findings 12-14
Osteometrics 14
Summary and Conclinsions 15
Bibliography 16
Acknowledgements 17
Tables
1 Prientation of Sub-Operations 4
2. percentage Distribution:by Class 18
3. MNI and Percentage of Species Identified to Genus and Species. . 19 4. Osteometric Calculations. 20
Maps

1. District of Ungava
2. Nunainguq-1 Site
Appendices
A. Distribution of Skeletal Elements by Body Portion
B. List of Species that Range into Extreme Northern Ungava
C. List of Identifications by Sub-Operations and LevelsD. List of Specimens Showing Si
E. List of Identified Specimens
Charts
3. Distribution of Phocidae
4. Distribution of Principal Species by Sub-Operationa and Levels

nUNAINGUQ-site KIL. 3 (JcDe-1)

 Topographie et situation des structures du sous-espace "A".MISSION NUNAINQUK 1973
LABORATOIRE D'ARCHEOLOGIE U. Q.U.A.M.

Introduction

The following report presents the analysis of the faunal material retrieved from the House 2 occupation of the Nunainguq-1 site (JcDe-1). The Nunainguq-1 site is located at the extreme northern tip of the QuebecLabrador Peninsula and is between Young Inlet to the south, and the Strait of McLelan to the north, facing Killineq Island.

The Nunainguq site first appeared in the literature in 1884 when robert Bell, a geologist/naturalist, headed an expedition up along the east coast of Hudson's Bay. After setting up a station at Port Burwell, he continued Jurther up the coast to the tip where he encountered the remains of many Eskimo houses which appeared to him to be quite ancient, except for one, which he noted, appeared to have been last lived in no more than one year previously. (Stewart, 1979). From Bell's descriptions of where this house was located, it was determined, that House 2 was the occupation in question (Stewart, 1979; Archambault, 1978). It can then be safely assumed that the House 2 occupation was in use at least up until 1883.

House 2 , itself, is situatyed, along with House 1 , on a small mound or rise in terrain, and is separated from the other 13 structures (which together with Houses 1 and 2 comprise the Nunainguq-1 site) by a shallow valley. Excavation of the Nunainguq-1 site was begun in 1977 by William Fitzhugh and was undertaken quickly with a salvage operation approach as a large portion of the site was disappearing, through the actiond erotion, int the cean. At that time, Fitzhugh concentrated on this area (Houses 4,5, and 10)
and also
of which Nunàinguq-1 is but one. Excavation was again undertaken in 1978 during which time House 2 was excavated. To determine the stratigraphic nature of Houses 1 and 2, a test trench was dug along the west slope of the mound on which these two Houses are situated. From the excavated material the top layer of House 2 was determined to be the result of an occupation by Labrador Eskimos, and the layer below it was ascribed to a Thule occupation, based on the abundance of characteristic Thule implements and whale remains (eg. baleen plates). A sample was taken from the base of this trench by Fitzhugh and was subsequently given a radiocarbon date of 400 ± 60 B.P. for the Thule occupation. (Archambault, 1978:78) From this date, and that provided by Bell, it can be stated that HOuse 2 was first occupied by people belonging to the Thule culture ca. A.D. 1500 and was last occupied in the late 1800's by Labrador Eskimos. The point at which the latter took over from the former is as yet undetermined.

House 2 itself is fairly quadrat angular in shape and is comprised of a domestic/living space that is relatively small ${ }^{\text {and }}$ which is surrounded to the south and east by a meter-wide platform. As is the case with Housel, House 2 appears to have originally been quite a bit larger. The evidence that suggests that subsequent occupations became smaller is the presence of another wall foundation 50 cm north of the most recent wall. From the orienation of the set of wall foundations, the archaeologists have determined that House 2 was probably reconstructed two or more times with each subsequent structure being slightly smaller than the previous one (Stewart, 1979). The domestic space inside the house is entirely covered by flat stones, several of which appeared to be in their original place. Many of these paving stones are impregnated with burned seal grease. It is the archaeo(Togist's opinion that these stones are too numerous to have been part of
(V) the wall structure. The northern extremity of the platform was also covered in seal grease. The southern part of the platform was covered with flat rocks which are thought to have formed the interior peripheral wall (Stewart 979). The entrance way measured approximately 4 m in length and runs northwest away from the house. Half way through the entrance way, the tunnel goes down at a steep angle and then goes up again as one moves towards the house. This feature in the entrance way is commonly referred to as a coldair trap, for the space that descends wi¥l hold the cold air and keep it from traveliing up into the house. Semi-subterranean houses with coldair traps in the tunnels are frequently found in the high arctic, and are ofter associated with both Paleo- and Neo-Eskimo occupations. Bell noted that the local Inuit he encountered commonly lived in semi-subterranean houses from early November to the end of January at which time they would move into snowhouses. However, as some of the houses at Nunainguq-1 do not have cold-air traps, the archaeologists feel it is unlikely that the presence or absence of a cold trap is related to the season during which le House was being occupied.

Geographically, the Nunainguq site is ideally located, for nearby there is a small inlet at the widest part of the strait, and because of the strong current through the strait, this area remains ice free throughout the year. And, as this area attracts large numbers of seals year-round a year-round occupation of the Nunainguq :site is quite feasible (Archambault, 1978:73). The continuous abundance of seals in this area explains the high concentration of occupation remains (Nunainguq sites 1-7). Interms of the geology of the area, the northernmost tip of the Labrador Peninsula is Precambrian rock with volcanic and glacial till sediments (sand and clay) (Quebec Dept. of Mines 1929:14). According to Hare's photo-reconnaissance survey of the area, the northern tip is far above the tree-line and is part of what he calls "Lichen-dominated Tundra" (Hare 1959 (30), and peat moss (Stewart 1979; Archambault 1978). The terrain is primarily bold hills that are part of the Torngat mountain range (Hare 1959).

The abundance of peat is a significant factor in that peat sods were rrequently used to form the roofs of semi-subterranean houses, particularly in the Thule coulture (McCartney 1979:305).

Because of the rapiderosion of the Nunainguq site, excavation was approached as a salvage operation(asmentionedabove). and as Jordan notes (1985:4), much of the artifactual material was retrieved without exact provenience, However, the excavation of HOuse 2 seems to have been more systematic as proveniences and lots were provided for the faunal material received for analysis. The excavation of House 2 was undertaken in sub-operations. The nature of each is provided in Table 1.

Table 1
 Sub-Operations of HOuse 2.

O_{2}Sub-operation 2AI Level I - hearth area
Sup-operation 2B Level I - platform
sub-operation 2C level I - entrance floor
Sub-operation 2C Level II - entrance floor
sub-operation 2D Level I - north wall
Sub-operation 2E Level I - east wall
Sub-operation 2F Level I - south part of west wall
Sub-or Sub-operation 2G Level I - north part of west wall.

Unfortunately, only the material from sub-operations 2A through to 2C Level from the site
II arrived with the other faunal materialy and as such, only the faunal material from these areas has been analysed for presentation in this report. Therefore, the complete analysis of the faunal material fam House 2 must remain incomplete until the rest of the sample can be located.

Faunal Findings - Body Portions

The gross bone count from the five sub-operations totalled 500 bones. Of that 500,488 , or 97.6%, were Mammalian, and 12 , or 2.4% were Avian. No
other Classes were represented. (See Table 2). A certain percentage of each Lass was unidentifiable past Class: 12 of the 488 , or 2.4% of the total. sample; and 1 of the 12 Avian specimens, or 0.2% of the total sample. Suboperation 2C, the entrance-way, yeelded by far the most faunal material at 70.6% of the total sample. The other sub-operations $2 A, 2 A I$, and $2 B$ each yielded $9.4 \%, 1.6 \%$, and 18.4% respectively of the total sample. (See Appendix C) The relative absence of faunal material in the living area inside the house seems to suggest that the inhabitants kept their living space fairly clean and possibly swept their garbage into the entrance-way. It is reported by M. Staab (1979:351) that Thule houses were kept relatively clean and that garbage was dumped into middens outside at intervals.

Despite the lack of detailed information that is specific as to the nature of the soil matrix from which the sample was recovered (information ()t provided), it should be noted that the majority ofthe bone shows varying degrees of erosion, particularly of the inner cortex. However, those specimens with the highest degree of inner cortex erosion, suggesting a high acid content in the soil (perhaps from the local vegetation), also demonstrate a marked preservation of the outer layer of the bone cortex suggesting, perhaps, a high irom content in the soil. As the last occupation was by Labrador Eskimos in a post-contact period, it is conceivable that an irom content in the soil may be the result of metal European trade items. A description of artifacts associated with each level and sub-operation has not been provided so this suspicion cannot be confirmed. A pinkish-red or green staining has been noted on much of the bone but these are most likely various molds that have developed on the bone either on the site or during the storage period after excavation. Those specimens that have fot deteriorated to such a high degree demonstazate various degrees of weathering and erosion (eg. split lines that may or may not run deeply into the bone cortex; sunbleaching of those specimens found on the surface or
sub-operation 2A, Lot 5; abrasion of processes; and general erosion of the (Kone).

As seen in Table $3,43.4 \%$ of the total sample could be identified to at least Genus. 95.2% of the total sample was identifiable below Class among the Mammalian specimens, and 2.2% of the total sample was identifiable below Class Aves. The species most represented skeletally in this sample was the harp seal (Phoca groenlandica Erxleben) which comprised 19.9\% of the total Phocidae. The second most common species was the ringed seal (Phoca hispida 9.5%
Schreber)^ (See Chart 1). Even within each sub-operation and level, harp seal was the most frequent species represented. The percentage representation of the other species in descending order after ringed seal is bearded seal (Erignathus barbatus (Erxleben)) - 5.2\%; harbour seal (Phoca vitulina Linnaeus) - 4.5\%; and hooded seal (Cystophora cristata (Erxleben)) - . 5\%

However, when an MNI calculation is made (see Table 3), it appears that only 5 harp seal individuals can be positively counted as is also the case for ringed seal. All of the main body portions of all aseal specimens are represented skeletally, so it must be concluded that the shole seal carcass was being brought back to the house for processing. The close proximity of the occupation areas to the main seal catchment area may help to explain wiy all portions of even bearded seal (the largest) are represented at the house assuming that the larger carcasses would be sectioned at the kill site and only the primary portions would be taken to the house. It is strongly suspected, however, that a large portion of those specimens identified to Genus (phoca) only (on the basis of size) are probably harp seal. Those specimens identified to Fanily only (Phocidae) was also based on size in that ${ }^{\boldsymbol{\omega}}$ those specimens that were considerably larger thar the $\perp a b$ specimens and where no particular feature could be identified, it was assumed that tnese specimens could also possibly be immature bearded or hooded seal, therefore not Phoca sp.

Distribution of Phocidae Nunainguq Site (JcDe-1)

In addition to the Phocidae, Rangifer tarandus caribou (Gmelin) was another principal Mammalian species, comprising 24 specimens or 5.0% of the total sample (MNI=2) (see Charth) body portions are represented skeletally with the highest percentage coming from the trunk portion (48\%), and the second greatest percentage (24%) coming from the head portion. It does not seem likely then, as Spiess (1984) suggested, that the occupants of the Nunainguq site were migrating south to hunt caribou during the summer, for if this were the true, one would expect to find a greater percentage of limb elements being transported back to the site for either their marrow content, or for use in tool making, rather than trunk elements such as ribs and Vertebrae which contain the smallest proportion of meat in comparison to the haunches, which is the case at the Housed 2 occupation. It is therefore strongly suspected that the caribou individuals represented on the site ?re probably lone individuals that strayed north of their normal range and were taken advantage of by the Nunainguq hunters.

The other mammalian species, Lepus arcticus Ross, or arctic hare; Vulpes vulpes (Linnaeus) and Alopex lagopus (Linnaeus) - red and artic fox - were probably hunted for their furs as the meat of rabbit is not very nutritious. and neither is fox meat commonly eateri However fox pelts are prized as trim for around the neck and hood edges of parkas beaause water does not condense on their fur, and rabbit fur is prized as a lining for socks and mittens.

The fact that only one Ursus maritimus Phipps, or polar bear, specimen was recovered poses more questions than answers. It is highly likely that polar bear was hunted, both for meat and fur, but why only the pateila remains is a question that cannot be answered at this point.

The one Canis species specimen - a rib - could give evidence to the presence of domestic dogs on the site, however the specimen could also be representative of a small wolf. The presence of a butcher mark on this

specimen does not give evidence either way.

The small percentage of whale bone on the site does question to some extent the placing of the lowest level with the Thule culture which characteristically contains a great deal of whale, particularly ribs which were used as roof supports for their semi-subterranean houses (McCartney 1979). However, Freeman (1979) claims that the association of Thule culture and whale hunting is too general and that the predominance of whale in some Thule sites is more the result of good whale hunting or scavenging grounds rather than cultural preference or selection. As only a few Cetacean specimens were recovered from House 2, it is likely then that the occupants of this house, whether or not they were Thule, were probably not hunting whale, or at least not avidly, and the specimens present are the result of scavenging.

The few Avian specimens recovered may be more the result of poor reservation or collection rather than. the result of cultural non-selection, for it is ethnographically reported that at least the Labradar Eskimo exploited the local Avian species as well as many of the fish species . Significantly,
(Hawkes, 1916:34). A Do fish specimens were recovered either.

Archaeological Aspects of Faunal Findings

Thirty-eight specimens, or 7.6% of the total sample of bone show evidence of butchering either in the form of cut marks or definite sectioning. 36.84% were ribs; 28.95% were limb bones; 10.53% were either skull or mandible bones; and the other 23.68% is comprised of various other bones such as metatarsals, phalanges, innominate portions, and caribou antler (See Appendix D). Thereappears to be little patterning in the butchering tech* Aiques from the small sample analysed. The only point worth noting is that the two Avian specimens - both coracoids, and both Somateria sp. - that show signs of butchering have the cutmark in a similar location - on the

```
anterior/ventral portion. Whether or not this factor is significant can-
``` be determined from two specimens only.

There is no evidence of cooking or heat exposure, in the form of charring or calcination, evident in any of the specimens analysed. However, it is known at at least seal grease was being cooked from the above mentioned patina on the flat stones in the living area of House 2.

Only two specimens show evididence, or even suggest, the formation of an artifact from the faunal bone. The first, a ringed seal metatarsal, has had a hole hollowed out of the ventral side of the bone, just below the proximal epiphysis. The intention of such an alteration is not known. A suggestion might be the preparation of a hole for the placement of a gouge of some-sort, resulting in a composite tool. The second specimen in mind is a fractured antler fragment that, due to the nature of the fractuing, is a roughly triangular shape and has one edge that appears to have once been sharpened. Perhaps this was a knife or scraper of sorts. Other specimens that have been fractured or butchered have pointed aspeets to them, but whether or not these points were intended or were the resilt of butchering is indeterminable. It is likely that if a serviceable point was manufactured inintentionally during butchering that it probably would have been utilized.

Only three specimens suggest any form of pathology. The first is a harbour seal distal humerus; the second is a harp seal proximal innominate: and the third is a harp seal thoracic vertelora. In all three cases, the ; evidence is a slight lipping around the edges of the articular facets which may be evidence of mild arthritis or, because of the minimal nature of this bone development, may simply be the result of well developed muscle or fendon attachments of a robust animal. The evidence is too slight to be certain either way.

There do not appear to be any intrusive elements in the sample to date,
as all species identified naturally occur in the area. However, it is prudent tohote at this point, as it is known that there have been at least two separate cultural occupations of HOuse 2 , and that for the majority of the \(f\) House, except for the entrance way, there is only one level, that the Level \(I\) is undoubtedly a mixture of all occupations of this HOuse. All sub-operations and levels contain, generally, the same variety of species all with the greatest emphasis on harp seal. The primary difference between Levels \(I\) and II in the entrance-way (sub-op. 2C) is that Level I - the top level - contains more faunal bone than does Level IIA However, percentage-wise it is a difference of only 2.2\%. Other differences are an increased percentage of caribou in Level II as opposed to Level I (a difference of 1.45\%) ; and a complete absence of Avian specimens from Level II where they are present in Level I which may be due to preservation considering the greater antiquity of Tevel II. Despite these meager differences (for further comparison refer to p. 2 of Appendix \(C\) and Chart 2), there appears to be little difference between the resource exploitation strategies of the Thule culture and the later Labrador Eskimos. The greater percentage of faunal material in Leveli I is probably the result of either a longer duration of occupation (considering also the fact that the size, and presumably the population, of the latter occupation is smaller), or the result of better preservation considering that the latter occupation may be less than 100 years old.

\section*{Seasonality}

The determination of the season(s) of occupation ras demonstrated by the House 2 faunal material is a difficult task and involves the considertion of more factors other than the ages of the specimens when they were dispatched. As mentioned above, because of the geographical location of the site in close proximity to a small water inlet which remains ice-free throughout the year, it is economically feasible for Inuit people to survive

\section*{Distribution of Principal Species by Sub-Operations and Levels}

LEGEND

E. barbatus
P. hispida
C. cristata
\(P\). vitulina
P. groenlandica
R.t. caribou

TAXA

Year long at this site, provided they have the technology to hunt sea mammals, particularly seal, either from the shore, \(\sigma r\) from the water. It is knowr that Thule people at other sites had a boating technology (Freeman 1979), and it is known ethnographically that Labrador Eskimo used kayaks to hunt gquatic mammals (Hawkes 1916). To hunt ringed seal who remain near fo fost ice, the \(^{\text {fol }}\) hunters would have need of boats. To hunt harp seal who prefer open water, the hunters would have need of boats. So, provided the hunters had access to boats, which they probably did, and provided seals were accesspble year round in the area, there is no reason to assume they could not have occupied the site year-round. All of the species identified, except for the caribou and the harp seal, both fammalian and Avian, are, for the most part, available in the site area all year. The majority of the seal specimens are either immature or older, which cennot pinpoint any definite season. Sie
presence of an immature bearded seal suggests that the hunters were present at the site some time in late summer/early fall (the individual is quite young - but no juvenile cortex). Harp seal are migratory and are presumably available in extreme northern Ungava in late May to early June on their way north to the waters around Greenland from their principal breeding areas further south along the coast near to the mouth of the St. Lawrence River (Mansfield 19E7:12), and again around mid-October on their way south. Harp seal pupping begins somewhat earlier than the other Phocidae in mid-February rather than between mid-March and mid-June. The presence of a juvenile Harp seal calcaneuk suggests that occupation of the site must also have included the very early spring as well. (This juvenile specimen asks further questions that be dealt with below.) As it is eeasible economically for people to inhabit the region during the winter and by the immature bearded seal, likely they were there in late summer to mid-fall, it is also likely, with the presence of the harp seals during the summer (considering also the large proportion of harp seal in the sample),
that these people were also at Nunainguq during the summer It semsquite poeible that House 2 was occupied the year through. However, the most likely occupation is from late fall, early winter to late spring, condidering that no significant proof can be provided for a summer occupation.

\section*{Inter-sitę,Inter - cultural Comparisons}

Unfortunately, there is very little accessible or published reports of sites in the north Ungave/Killineq Island region, other than the data concerning the other Nunainguq occupation sites, none of which are reported to contain either Thule or Labrador Eskimo culture remains (Jordan 1985:31). A comparison of other Thule site evidence and the evidence from House 2 , as used above, is only useful for very general aspects of the culture such whether or not whale is a primary cultural component, the types of houses ouilt, or whether or not the people had a boating technology. The only significant point to note concerning Thule exploitation habits is that other Thule sites contain, as the predominant species, ringed seal rather than harp seal (Staab, 1979)^. As for Spiess' faunal analysis of Nunainguq-1 materiad he fourid that harp seals out-numbered ringed seals either \(2: 1\) (66\%) or 3:2 (\(60 \%\) using bone counts and MNI calculations respectively (Spiess 1984:16). It is likely that had the sample for this report been larger, there would have been a greater difference in favour of harp seals as appeared in Spiess' analysis. The uniqueness of the faunal findings of this site is due in large part to the location of the site and the obvious abundance and accessibility of harp seals.

\section*{Sological Aspects of Faunal Findings}
extirpated from the region as yet, although the bounties on seals are at of various
resent quickly depleting many seabispecies along the Labrador coast. only the Labrador duck is known to be now extinct, but no skeletons are in existnce, so it is impossible to know when a speidmen shows up in a sample.

As mentioned above, it is more likely that the caribou specimens are the result of individuals straying north of their normal range rather than the result of human transportation of bone from southern hunting grounds.

However, there is no reason to suggest that previously, the range of this species actually extended further north than it does at present.

The presence of the juvenile harp seal calcaneuk does, however, pose some problems. This specimen was compared to two lab specimens in an effort to determine approximate age based on how quickly is the juvenile cortex lost, and the rate of growth within a known period of time. The first test speimen was l-2 weeks old, was covered in juvenile cortex, like the HOuse 2 specimen, but was slightly smaller than the House 2 specimen, (the lab specimen was male.) However, the degree of facet and overall feature development was approximately the same. The second lab specimen was 10 months old, had no remnants of juvenile cortex, had a greatly increased degree of facet and feature development, and was nearly twice the size of the House 2 specimen. No study has been located that discusses the duration of juvenile cortex in phocids so based on the complete covering of juvenile cortex of the House 2 specimen, it must be assumed that the age is closer to 2 weeks than 10 months. If this is the case, and also considering that harp seals do not begin to migrate from the pupping grounds until the young have more than tripled their weight and almost doubled their length, which takes (mansfield 1967)
bout 3 months \(\hat{\text { ? }}\) it is more likely that the House 2 specimen is that of an
individual that has not yet reached 3 months of age, and has therefore probably not yet begun migrating, which asks the question, where was this animal born? A suggestion is that perhaps there was once a pupping and
reeding area further north along the Labrador coast than those that exist presently. An alternate explanation, ff course, is that, for some reason, an individual harp seal gave birth at a comparatively late date and that the young animal was able to travel as far north as Nunainguq despite its young age. It will be interesting to see if any other juvenile herp seals appear in assemblages from Nunainguq that might support this suggestion.

\section*{Osteometrics}

An osteometric study was undertaken, primarily as an exercise, using the distal end of the various species of Phocidae humeri. The general assumption was that the morphological differences between species miodita be represented by a ratio of width to depth. It was hoped that the contrived ratio (\({ }^{N}\) Nuld remain a constant despite the age of the specimens as all of the House 2 specimens were of indeterminate age beyond immaturet. The lab specimens were also measured for comparison as a group to the specimens from House 2. The data is presented in Table 4. The width measurement was taken at the broadest point at the distal end at the proximal extremity of the condyles (medial to lateral); and the depth measurement was taken at the mid-point of the lateral fossa while holding the calipers at right angles to the shaft of the bone. The measurements were taken twice to assure of accurac! The conclusion made is that the depth measurement cannot be taken consistently because of the lack of any feature that would suggest a placement of the calipers. Generally speaking, it appears that the House 2 specimen ratios are comparatively smaller than the lab specimens. Whether or not this is a significant factor concerning the size of seals of 100 years ago or more cannot be determined because of the unreliability of the date.

In summary, whether or not the occupation was of the Thule culture or the later Labrador Eskimo culture, House 2 of the Nunainguq-1 site represents the occupation of groups of people whose primary source of food was sea mammals, primarily harp and ringed seal. Whale was most probably not hunted, and caribou was hunted on an opportunistic basis. Small fur-bearing animals were trapped presumably for furs. The presence of a juvenile harp seal calcaneupl may or may not indicate a previous, no longer existent, breeding gound further north along the Labrador coast. The seasons of occupation were most likely mid-fall to late-spring, and possibly yearround, however the inclusion of the summer months in the seasons of occupation requires further support.

In conclusion, House 2 represents the last few hundred years of occupation of a key region - Nunainguq-l site - that gives ividence of intensive occupation from the Pre-Dorsets to the Neo- Eskimos, in effect, the last 3000 years.

\section*{BIBLIOGRAPHY}

ArCuambault, Marie-France
1978 Nunainguq: Un Site de Polynie Dans L'Arctique Oriental Quebecois. Dossier No. 49., Ministere des Affaires culturelles, Direction generale du Patrimoine. pp. 73-81

3anfield, A.W.F.
1974 The Mammals of Canada. University of Toronto Press, Toronto
Department of Highways and Mines
1929 Extracts from Reports on the District of Ungava or New Quebec. Bureau of Mines, Quebec

Freeman, Milton M. R.
1979 "A critical View of Thule Culture and Ecological Adaptation" in Thule Eskimo Culture : An Anthropological Retrospective, ed. by Allen P. McCartney. National Museum of Man Mercury Series Paper No. 88, National. Museums of Canada, Ottawa. pp. 278-285

Hare, F.K.
1959 A Photo-Reconnaissance Survey of Labrador - Ungava. Memoir 6. Dept. of Mines and Technical Surveys, Ottawa.

Hawkes, E.W.
1916 The Labrador Eskimo. Deft. of Mines Geological Survey, Memoir 91 Government Printing Bureau, Ottawa.

Jordan, Richard H.
1985 "Paleo-Eskimo Occupations of Nunainguq l-7 Killinek Region, Arctic Quebec". Dept. =of Anthropology, Bryn Mawr College, Bryn Marwr, Pa.

Mansfield, A.W.
1967 Seals of Arctic and Eastern Canada. Fisheries Research Board of Car Canada, Ottawa.

Spiess, Arthur
1984 Faunal Analysis of the Nunainguq Labrador Eskimo Site (JcDe-1). Maine Historic Preservation Commission, Maine.

Staab, Margie L.
1979 "Analysis of Faunal Material Recovered from a Thule Eskimo Gite of the Island of Silumiut, N.W.T., Canada." National MuseumMan Mercury Series, Paper No. 88, pp. 349-379.

Stewart, Henry
1979 "Rapport de la Mission Nunainguq 78 (KIL. 3 - JcDe-1)" Laboratoire D'Archaeologie de L'UQAM Mission Nunainguq.

\section*{Acknowledgements}

Thanks are owing to Dr. H.G. Savage for his excellent instruction and kind support and encouragement; to Ian Badgley for the provision of the faunal sample from the Nunainguq site and accompanting literature; to Dr. Luis and Chris Marti for the patient assistance with Xantippe; and to Katy who kept watch while I typed.

\section*{Table 2.}

\section*{DISTRIBUTION OF IDENTIFIED BONES BY CLASS}

Table 3

MI AND PERCENTAGE OF SPECIES IDENTIFIED TO GENUS/SPECIES

Genus/sp. E OOlogist No. \% ELEMENT MNI \% of Total sample

AMALIA

AVES
\begin{tabular}{llllll}
Somateria sp. & - & 3 & \(1.4 \div\) & r. coracoid 2 & \(.6 \%\) \\
Merges sp. & - & 3 & 1.4 & general & 1
\end{tabular}

213 100\%
27 \(43.4 \%\) of 500

\section*{Table 4 \\ OSTEOMETRIC CALCULATIONS}

\section*{J - 1 specimens}
Specimen Species

2B5LI-42 P. groenlandica
2A5LS-1 P. hispida
2C3LI-39 P. hispida
c
2C4LI-31 P. vitulina
2ClLI-10 E. barbatus
2C3LI-38 E. barbatus

Lab Specimens
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Fa 303-3 & P. hispida & 35.53 mm & 14.04 mm & 2.5:1 & 34.50 mm & 12.28 mm & 3:1 \\
\hline FA 303-1 & P. hispida & 33.36 mm & 11.02 mm & 3:1 & 33.13 mm & 11.02 mm & 3:1 \\
\hline FA 303-9 & P. hispida & 36.48 mm & 13.57 mm & 2.7:1 & 35.33 mm & 10.37 mm & 3.4 :1 \\
\hline \[
F \int 34-5
\] & P. groenlandica & 41.06 mm & 17.72 mm & 2.3:1 & 40.63 mm & 17.44 mm & 2.3:1 \\
\hline FA 304-9 & P. groenlandica & 37.26 mm & 15.25 mm & 2.4:1 & 37.25 mm & 14.33 mm & 2.6:1 \\
\hline FA 302-5 & P. vitulina & 35.49 mm & 11.69 mm & 3:1 & 35.36 mm & 11.12 mm & 3.1:1 \\
\hline \(F \geq\) 305-7 & E. barbatus & 63.13 mm & 21.25 mm & 3:1 & 63.53 mm & 21.68 mm & 2.9:1 \\
\hline
\end{tabular}

\section*{Appendix \(A\)}

\section*{DISTRIBUTION OF SKELETAL ELEMENTS BY BODY PORTION}

\section*{Class: Mammalia}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Order & 1 Family & Genus/Species & Head & Trunk & Ant L & Pos 1 & Limb & Totel \\
\hline |** unident ifiable & |** & |** & 2 & 0 & 0 & 0 & 8 & 10 \\
\hline | Lagomorpha & | Leporidae & | Lepus arcticus & 0 & 1 & 0 & 1 & 0 & 2 \\
\hline Cetacea & |** & ** & 2 & 1 & 0 & 0 & 0 & 3 \\
\hline Cetacea & Monodontidae & |**. & 1 & 0 & 0 & 0 & 0 & 1 \\
\hline Cetacea & Monodontidae & | Delphinapterus leucas & - & 0 & 1 & 0 & 0 & 1 \\
\hline | Carnivora & Canidae & \({ }^{* *}\) & 0 & 1. & 0 & 1 & 1 & 3 \\
\hline Carnivora & Canidae & | Ganis sp & 0 & 0 & 1 & 0 & 0 & \\
\hline Carnivora & Canidae & | Alopex lagopus & 4 & 1 & 1 & 1 & 0 & 7 \\
\hline Carnivorá & Canidas & Vulpes vulpes & 0 & 0 & 2 & 0 & 0 & 2 \\
\hline Carnivora & Canidae & Wulpes sp & 1 & 1 & 3 & 0 & 2 & 7 \\
\hline Carnivora & Ursidae & Ursus maritimus & 0 & 0 & 0 & 1 & 0 & \(1 \cdot\) \\
\hline Pinnipedia & Phocidae & |** & 14 & 72 & 7 & 5 & 9 & \(10 ?\) \\
\hline Pinnipedia & Phocidae & Erignathus barbatus & 4 & 5 & 9 & 3 & 1. & 22. \\
\hline Pinnipedia & Phocidae & Phoca vitulina & 0 & 4 & 8 & 7 & 0 & \(19^{\circ}\) \\
\hline Pinnipedia & Phocidae & | Phoca hispida & 3 & 14 & 15 & 7 & 1 & 40 \\
\hline Pinnipedia & Phocidae & Phoca groenlandica & 25 & 22 & 22 & 14 & 0 & 83 \\
\hline Pinnipedia & Phocidae & Phoca sp & 44 & 52 & 21 & 28 & 3 & 148 \\
\hline Pinnipedta & Phocidae & cystophora cristata & 0 & & - & 2 & 1 & 4 \\
\hline | Artiodactyla & |** & ** & 0 & 0 & 0 & 0 & 1 & - 1 \\
\hline | Artiodactyla & Cervidae & Rangifer t. caribou & 6 & 12 & 4 & 2 & 0 & 24 \\
\hline \multicolumn{3}{|c|}{*** TOTALS ***} & 106 & . 187 & \(94 \mid\) & 72 1 & 27 & 486 \\
\hline
\end{tabular}

Class: Aves
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Order & Family & Genus/Species & Head & Trunk & Ant L 1 & Pos L & Limb & Total \\
\hline |** unidentifiable & ** & |** & 10 & 01 & 0 & 0 & 1 & 1 \\
\hline | Anseriformes & Anatidae & |** & \(1 \cdot 0\) & 0 & 0 & 0 & 3 & 3 \\
\hline | Anseriformes. & Anatidae & | Somateria sp & 0 & 0 & 2 & 1 & 0 & 3 \\
\hline | Anseriformes & Anatidae & | Mergus sp & 0 & 0 & 2 & 1 & 0 & 3 \\
\hline | Charadrifformes & Laridae & |** & 0 & 0 & 1 & 1 & 0.1 & 2 \\
\hline \multicolumn{3}{|c|}{*** TOTALS ***} & 0 & 01 & 51 & 3 & 41 & . 12 \\
\hline
\end{tabular}

Note: Total is equal to 500 , nowever, 2 specimens were unidentifiable to body partion (class Mammalic

\section*{APPENDIX \\ B}

LIST OF SPECIES THAT RANGE INTO EXTREME NORTHERN UNGAVA
```

MAMMALIA

```

Lepus arcticus Ross
Peromyscus maniculatus (Wagner)
Clethrionomys gapperi (Vigors)
Ondatra zibethicus (Linnaeus)
Dicrostonyx hudsonius (Pallas)
Dicrostonyx torquatus (Pallas)
Phenacomys intermedius (Merriam)
Microtus pennsylvanicus (Ord)
Erethizon dorsatum (Linnaeus)
Hyperoodon ampullatus (Forster)
Physeter catodon Linnaeus Delphinapterus leucas (Pallas)
Monodon monoceros Linnaeus Lagenorhynchus albirostris Gray Globicephala melaena (Traill)
Phocoena phocoena (Linnaeus)
Balaenoptera acutorostrata Lacepede
Balaenoptera musculus (Linnaeus)
Balaena mysticetus Linnaeus
Canis lupus (labradorius) Linnaeus
Vulpes vulpes (Linnaeus)
Alopex lagopus ungava (Linnaeus)
Ursus maritimus Phipps
Mustela erminea richardsonii Linnaeus
Mustela rixosa Linnaeus
Mustela vison Schreber
Martes americana (Turton)
Gulo luscus or Gulo gulo (Linnaeus)
Lutra canadensis (Schreber)
odobenus rosmarus (Linnaeus)
Phoca vitulina Linnaeus
Phoca hispida Schreber
Phoca groenlandica Erxleben
Halichoerus grypus (Fabricius)
Erignathus barbatus (Erxleben)
Cystophora cristata (Erxleben)
Rangifer tarandus caribou (Gmelin)
arctic hare
deer mouse
red-backed mouse
muskrat
Ungava lemming
collared lemming
heather vole
meadow vole
porcupine
northern bottlenosed whale
sperm whale
white whale (beluga)
narwhal
white-beaked dolphin
Atlantic pilot whale
harbour porpoise
minke whale
blue whale
bowhead whale
gray wolf
red fox
arctic fox
polar bear
ermine or stoat
least weasel
mink
marten
wolverine
river otter
walrus
harbour seal
ringed seal
harp seal
grey seal
bearded seal
hooded seal
caribou

AVES
Gavia stellata (Pontoppidan)
Gavia immer (Brunnich)
Puffinus gravis (O'Reilly)
Branta canadensis (Linnaeus)
Aythya marila (Linnaeus)
Somateria mollissima (Linnaeus)
Somateria spectabilis (Linnaeus)
Camptorhynchus labradorius (Gmelin)
Histrionicus histrionicus (Linnaeus)
Clangula hyemalis (Linnaeus)
Bucephala islandica (Gmelin)
Mergus serrator Linnaeus
Buteo lagopus (Pontoppidan)
Aquila chrysaetos (Linnaeus)
Falco peregrinus Tunstall
Falco rusticolus Linnaeus
Dendragapus canadensis (Linnaeus)
Lagopus lagopus (Linnaeus)
Lagopus mutus (Montin)
Charadrius semipalmatus Bonaparte
Actitis macularia (Linnaeus)
Numenius borealis (Forster)
Calidris pusilla (Linnaeus)
Gallinago gallinago (Linnaeus)
Phalaropus lobatus (Linnaeus)
Stercorarius parasiticus (Linnaeus)
Larus argentatus Pontoppidan
Larus hyperboreus Gunnerus
Larus marinus Linnaeus
Rissa tridactyla (Linnaeus)
Sterna paradisaea Pontoppidan
Uria lomvia (Linnaeus)
Cepphus grylle (Linnaeus)
Nyctea scandiaca (Linnaeus)
Eremophila alpestris (Linnaeus)
Corvus corax Linnaeus
Oenanthe oenanthe (Linnaeus)
Anthus spinoletta (Linnaeus)
Spizella arborea (Wilson)
Passerculus sandwichensis (Gmelin)
Zonotrichia leucophrys (Forster)
Calcarius lapponicus (Linnaeus)
Plectrophenax vivalis (Linnaeus)
Carduelis flammea (Linnaeus)

Red-throated Loon
Common Loon
Greater Shearwater
Canada Goose
Greater Scaup
Common Eider
King Eider
Labrador Duck
Harlequin Duck
Oldsquaw
Barrows Goldeneye
Red-breasted Merganser
Rough-legged Hawk
Golden Eagle
Peregrine Falcon
Gyr Falcon
Spruce Grouse
Willow Ptarmigan
Rock Ptarmigan
Semipalmated Plover
Spotted Sandpiper
Eskimo Curlew
Semipalmated Sandpiper
Common Snipe
Red-necked Phalarope
Parasitic Jaeger
Herring Gull
Glaucus Gull
Great Black-backed Gull
Black-legged Kittiwake
Arctic Tern
Thick-billed Murre
Black Guillemot
Snowy Owl
Horned Lark
Common Raven
Northern Wheatear
Water Pipit
American Tree Sparrow
Savannah Spaarrow
White-crowned Sparrow
Lapland Longspur
Snow Bunting
Common Redpoll

\section*{APPENDIX C}

List of Identifications by sup-operations and Levels

Sub-op. Level Order

\section*{MAMMALIA}
LIA

2A
2A
2A
2A
2A
2A
2A
2A
AVES
(.)
\begin{tabular}{|c|c|c|c|c|}
\hline I & - & - & - & 1 \\
\hline I & Cetacea & Monodontidae & - & 1 \\
\hline 1 & Pinnipedia & Phocidae & - & 9 \\
\hline I & & " & Phoca sp. & 9 \\
\hline I & " & " & E. barbatus & 3 \\
\hline I & " & " & Phoca vitulina & 5 \\
\hline I & " & " & Phoca hispida & 3 \\
\hline I & " & " & Phoca groenlandica & 10 \\
\hline I & Artiodactyla & Cervidae & Rangifer t. caribou & 1 \\
\hline
\end{tabular}

2A
2A
2A

I
I
I
I
Anseriformes Anatidae

Mergus sp.
1
1
2
\(2.13 \%\)
2.13\%
2.13\%
4. 3\%

MRIMMALIA
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 2AI & I & Pinnipedia & Phocidae & & - & 2 & 25\% \\
\hline 2 AI & I & Pinnipedia & & Phoca & sp. & 2 & 25\% \\
\hline 2 AI & I & " & " & Phoca & groenlandica & 4 & 50\% \\
\hline Tot & & & & & & 8 & 100\% \\
\hline
\end{tabular}

MAMMALIA
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 2B & I & - - & - & - & 2 & \(2.17 \%\) \\
\hline 2B & I & Lagomorpha & Leporidae & Lepus arcticus & 1 & 1/09\% \\
\hline 2B & I & Cetacea & & & 1 & \(1.09 \%\) \\
\hline 2B & I & " & Monōdontidae & Delphināpterus leucas & 1 & 1.09\% \\
\hline 2 B & I & Carnivora & Canidae & - & 1 & \(1.09 \%\) \\
\hline 2B & I & & " & Canis sp. & 1 & 1.09\% \\
\hline 2B & I & " & " & Alopex lagopus & 1 & 1.09\% \\
\hline 2B & I & " & 1 & Vulpes vulpes & 1 & 1.09\% \\
\hline 2B & I & Pinnipedia & Phocidae & - & 16 & 17.39\% \\
\hline 2B & I & " & & E. barbatus & 5 & 5.43\% \\
\hline 2B & I & " & " & Phoca sp. & 17 & 18/48\% \\
\hline 2? & I & " & " & Phoca vitulina & 9 & 9.8 \% \\
\hline 2 t & I & " & " & Phoca hispida & I0 & 10.87\% \\
\hline \(2 \mathrm{~B}^{-}\) & I & " & \% & Phoca groenlandica & 19 & 20.65\% \\
\hline 2B & I & " & " & Cystophora cristata & 1 & 1.09\% \\
\hline 2B & I & Artiodactyla & Cervidae & Rangifer t. caribou & 6 & 6.52\% \\
\hline
\end{tabular}
Sub-op. Leve? Order
Family \(\frac{\text { APPENDIX C CONT }}{\text { Genus/species } \quad \text { No. I.D.s }}\) or per sub-op
MALA
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 2 C & I & - & - & - & 6 & 3.3\% \\
\hline 2 C & I & Lagomorpha & Leporidae & Lepus arcticus & 1 & . \(55 \%\) \\
\hline 2 C & I & Cetacea & & - & 2 & 1.1\% \\
\hline 2 C & I & Carnivora & Canidae & - & 2 & 1.1\% \\
\hline 2 C & I & & & Vulpes sp. & 3 & 1.65\% \\
\hline 2 C & I & " & " & Alopex lagopus & 6 & 3.3\% \\
\hline 2 C & I & " & " & Vulpes uulpes & 1 & . \(55 \%\) \\
\hline 2 C & I & Pinnipedia & Phocidae & & 42 & 23.08\% \\
\hline 2 C & I & & & E. barbatus & 11 & \(6.04 \%\) \\
\hline 2 C & I & " & " & Phoca sp. & 42 & \(23.08 \%\) \\
\hline 2 C & I & " & " & Phoca vitulina & 2 & 1.18 \\
\hline 2 C & I & \(n\) & " & Phoca hispida & 17 & 9.34\% \\
\hline 2 C & I & " & " & Phoca groenlandica & 31 & 17.03\% \\
\hline 2 C & I & " & " & Cystophora cristata & 1 & . \(55 \%\) \\
\hline 2 C & I & Artiodactyla & Cervidae & Rangifer t. caribou & 8 & 4.4\% \\
\hline
\end{tabular}

AVES
\begin{tabular}{|c|c|c|c|c|c|}
\hline 2 C & I & Anseriformes Anatidae & - & 2 & 1.1\% \\
\hline 2 C & I & & Somateria sp. & 3 & \(1.65 \%\) \\
\hline 2 C & I & " & Mergus sp. & 2 & 1.1\% \\
\hline
\end{tabular}

\section*{MAMMALIA}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 2C & II & - & & - & 3 & 1.75\% \\
\hline 2 C & II & Carnivora & Canidae & Vulpes sp. & 4 & 2.34\% \\
\hline 2C & II & & Ursidae & Ursus maritimus & 1 & . \(58 \%\) \\
\hline 2 C & II & Pinnipedia & Phocidae & - & 40 & 23.39\% \\
\hline 2 C & II & & " & E. barbatus & 3 & 1.75\% \\
\hline 2 C & II & I & " & Phoca sp. & 77 & 45.03\% \\
\hline 2C. & II & " & " & Phoca vitulina & 3 & 1. \(75 \%\) \\
\hline 2 C & II & " & " & Phoca hispida & 10 & 5.85\% \\
\hline 2 C & II & " & " & Phoca groenlandica & 20 & 11.70\% \\
\hline 2 C & II & Artiodactyla & Cervidae & Rangifer t. caribou & 10 & 5.85\% \\
\hline
\end{tabular}

Total

Totals and Percentages of Whole Sample
\begin{tabular}{lrr}
& 47 & \(9.4 \%\) \\
2 AI & 8 & \(1.6 \%\) \\
2 B & 92 & \(18.4 \%\) \\
2 & 182 & \(36.4 \%\) \\
\(2 \Omega\) & 171 & \(34.2 \%\) \\
\hline \(2 C I I\) & 500 & \(100.0 \%\)
\end{tabular}

\section*{List of Specimens Showing Signs of Butchering}

Family Genus/sp. Gatalogue No. Specimen

\section*{MAMMALIA}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Cetacea & - & - & \(2 \mathrm{C} 2 \mathrm{LI}-1\) & vertebral & epiphysis \\
\hline Cetacea & - & - & 2B5LI-18 & mandible & \\
\hline Carnivora & Canidae & & 2B3LI-7 & mid-thor & rib \\
\hline & " & Canis sp. & 2B5LI-44 & mid-thor & rib \\
\hline Pinnipedia & Phocidae & - & 2A4LI-10 & & , \\
\hline " & " & - & 2C4LI-6 & " & " \\
\hline " & " & - & \(2 \mathrm{C} 4 \mathrm{LI}=10\) & " & " \\
\hline " & " & - & 2C4LI-11 & " & " \\
\hline " & " & - & 2C4LI-13 & " & " \\
\hline n & " & - & \(2 \mathrm{C4LI}-19\) & 1 & \\
\hline
\end{tabular}
\begin{tabular}{lll}
" & " & E. barbatus \\
" & " &
\end{tabular}
"
"
"
n
"
"
"
"

"
"
n
"
"
"
Artiodactyla Cervidae Rangifer t. caribou

2C2LI-2
" \(\quad\) 2C4LI-2
" \(\quad\) 2ClLII-102
" \("\) 2B5LI-49
" \(\quad\) " 2ClLII-166
" \(\quad\) 2C4II-37
radius
5th metatarsal
radius
radius
mid-thor. rib post-thor. rib
skull fregment
mid-thor. rib
fibula
ulna
ulna
fibula
ulna
metatarsal
humerus
humerus
mandible pubis innominate frontal
mid-thor. rib
femu' diaphysis
antler
antler

AVES

Appendix E

```

Legend:

```

Cat. = Catalogue Number
SEA \(=\) Seasonality
SRM = Specimen Remarks
Age Class Conventions: I = Immature, \(A=\) Adult, \(I+=I m m a t u r e t, S=S u b-a d u l t, J=J u v e n i l e\)

ShNo = Sheet Number
NAL = Natural Alterations
COM = Comments

Class: Mammalia

PAT \(=\) Pathology
SID \(=\) Side
(blank) \(\Rightarrow\) Not available

Age \(=\) Age class
CAL \(=\) Cultural Alterations
\(x=\) Entry exists

Order: (not in library) *
Family: (not in library)
Genus/Species: (not in library) *
Zoologist:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Cat. & Shino & Provenience & Bone & Bone Portion & |SIO|Age|S & Sex|PAT/SEA|NAL| & CAL 9 SM \(\mid\) COM \\
\hline & & & & & --|---1- & - \(1--|--|-\) & -|---|---| \\
\hline 28iLI-4 & 7. & H2 28 I L1 7 & | unidentifiable & diaphysis & | \(1+1\) & 1.1 x & \(1|x|\) \\
\hline -285L]-23 & 50 & H2 28 ! 15 & | unidentifiable & & | I +1 & 1.11. & \(x\) \\
\hline | 2A4LI-11 & 107 & H2 2A: 14 & | unidentifiable & & \(1 \mathrm{I}+1\) & 1 & \begin{tabular}{l|l|l}
\(x\) & \\
\hline
\end{tabular} \\
\hline | 2C3LI-44 & 23. & H2 2C I:3 & | skull & fragment & \(\mid \mathrm{I}+1\) & \(x\) & \(x \mid x\) \\
\hline 2C4LI-38 & 278 & H2 2C I L4 & limb & diaphys is & | I 1 & 111 x & \(x|x|\) \\
\hline 20411-70 & 312 & \(422 C 114\). & unidentifiable & & \(1+1\) & \(x\) & 1 \\
\hline 2C4LI-83 & 324 & H2 2 C I L4 &) unidentifiable & & | I +1 & \(x\) & 11 \\
\hline 204LI-88 & 328 & H2 2C I 14 & unidentifiable & epiphyseal surface & | I & \(x\) & \\
\hline - 2C4LI-89 & 330 & H2 2 C I 14 & | unidentifiable & & \(1 \mathrm{I}+1\) & \(x\) & \\
\hline 2C1LII-22 & 354 & H2 2C II L1 & 1 limb & & | I +1 & \(\times 1\) & \(\times 1\) \\
\hline 2C1LII-30 & 362 & H2 2C II L1 & skull & fragment & \(\mid 1+1\) & \(x\) | & \(x\) \\
\hline 1-2C\{LII-57 & 389 & H2 2C II L1 & unidentifiable & fragment & | I +1 & \(\times 1\) & \(\times 1\) \\
\hline
\end{tabular}

Class: Mammalia
Order: Lagomorpha
Family: Leporidae
Genus/Species: Lepus arcticus
Zoologist: Ross

Class: Mammalia
Order: Cetacea
Family: (not in library) *
Genus/Species: (not in library) *
Zoologist:

Class: Mammalia
Order: Cetacea
Family: Monodontidae
Genus/Species: (not in library)
Zoologist:

Class: Mammalian
Order: Cetacea
Family: Monodontidae
Genus/Species: Delphinapterus leucas
Zoologist: (Pallas)

Class: Mammalia
Order: Carnivora
Family: Canidae
Genus/Species: (not in library) *
Zoologist:

Class: Mammalia
Order: Carnivora
Family: Canidae
Genus/Species: Cants sp
Zoologist:

Class: Mammalia
Order: Carnivora
Family: Canidae
Genus/Species: Alopex lagopus
Zoologist: (Merriam)

Class: Mammalia
Order: Carnivora
Family: Canidae
Genus/Species: Vulpes vulpes
Zoologist: (Linnaeus)

Class: Mammalia
Order: Carnivora
Family: Canidat
Genus/Species: Vulpes sp
Zoologist:

Class: Mammalia
Order: Carnivora
Family: Ursidae
Genus/Species: Ursus maritimus
Zoologist: Phipps

Class: Mammalia
Order: Pinnipedia
Family: Phocidae
Genus/species: (not in library) *
Zoologist:

Class: Mammalia
Order: Pinnipedia
Family: Phocidae
Genus/Species: Erignathus barbatus
Zoologist: (Erxleben)

\section*{Class: Mammalia}

Order: Pinnipedia
Family: Phocidae
Genus/Species: Phoca vitulina
Zoologist: Linnaeus

Class: Mammalia
Order: Pinnipedia
Fanily: Phocidae
Genus/Species: Phoca hispida
Zoologist: Schreber

Class: Mammalia
Order: Pinnipedia
Family: Phocidae
Genus/Species: Phoca groenlandica
Zoologist: Erxleben

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Cat. & ShNo & Provenience & 8one & Bone Portion & |SID|Age|Sex|PAT| & [SEA|NAL|CAL|SRM|COM| \\
\hline ------- & & & |-------------- & & |---|---|--- & --|---|---|---|--| \\
\hline \(203!-29\) & 222 & 4220113 & Pradius & proximal & \(R \mid I+1\) & \(|x|\) \\
\hline 203:1-31 & 224 & 4220113 & | temporal & | anterior/dorsa? & \(L \mid I+\) & | \(\times 1\) \\
\hline 2C3LI-35 & 228 & H2 2 C I 13 & | mandible & horizontal ramus & \(\mathrm{R} \mid \mathrm{I}+1\) & \(|x|\) \\
\hline 2C3LI-37 & 230 & \(\mathrm{H}_{2} 2 \mathrm{C}\) I L3 & cervical vertibra, atla & whole & | \(\mathrm{I}+1\) & \(|x|\) \\
\hline 2C3LI-40 & 233 & H2 2C I 13 & mid-thoracic vertebra & body \& dorsal arch & \(1+1\) & \(|x| 1 \mid x\) \\
\hline 2C4LI-20 & 260 & H2 2 C I 44 & 1 tibia & diaphysis & R | I +1 & \(|x|\) \\
\hline 2C4LI-25 & 265 & H2 2 C I 14 & fibula & diaphysis & \(111+1\) & \[
\times 1
\] \\
\hline 2C4!1-28 & 268 & H2 2C I 14 & f femur & diaphysis & \(|R| I \mid\) & \[
x \mid
\] \\
\hline 2C4LI-29 & 258 & H2 2 C I 14 & 1 femur & d diaphysis & \(|R| I+1\) & \[
|x|
\] \\
\hline 2C4LI-30 & 270 & H2 2C 114 & 1 femur & d diaphysis & \[
|R| I+
\] & \[
|x|
\] \\
\hline 2C4LI-35 & 275 & H2 2C I L4 & | humerus & distal epiphysis & \(|R| I+1\) & \[
\mid \times 1
\] \\
\hline 2C4LI-38 & 276 & H2 2C I L4 & | humerus & | distal epiphysis & L | I +1 & \(|x||x|\) \\
\hline 2C4LI-47 & 288 & H2 2C I L4 & - mandible & | horizontal ramus & L | I + & \(1 \times\) \\
\hline 2C4LI-49 & 290 & H2 2 C 114 & | mandible & - mandibular condyle & L | I + & \(x\) \\
\hline 2C4LI-55 & 296 & H2 2 C 114 & temporal & | petrous portion & R | I +1 & 1 x \\
\hline 2C4LI-61 & 302 & H2 2 C I 14 & | proxima] phalanx & \% whole & \(1+1\) & \(|x|\) \\
\hline 2C1LII- & 333 & H2 2 C II 11 & femur & | lateral half & \(L|A|\) & \(|\mathrm{x\mid}| \mathrm{x} \mid\) \\
\hline 2C1LIT-3 & 335 & \(\mathrm{H}_{2} 2 \mathrm{C}\) II 11 & 1 femur & | distal epiphysis & \(R|I|\) & \(|x|\) \\
\hline 2C1LIT-4 & 338 & H2 20 II ! & ulna & diaphysis & L I +1 & \(|x||x|\) \\
\hline 2C1LII-5 & 337 & \(\mathrm{H}_{2} 2 \mathrm{C}\) II L1 & | scapula & \% whole & \(\underline{L} \mid+1\) & \(|x| \mid\) \\
\hline 2CiLII-5e & 304 & H2 2C II \(!1\) & | skull & anterior & \[
1+1
\] & \[
|x| x|x|
\] \\
\hline 2CILII-65 & 397 & H2 2C II L1 & | temporal & | petrous and bulla & \[
1111+1
\] & \[
|x| \quad|x|
\] \\
\hline 2C1LII-66 & 338 & H2 2C II L1 & temporal & petrous fragment & \[
111+1
\] & \[
|x| \quad \mid x
\] \\
\hline 2C1LII-67 & 399 & H2 2 C II 1.1 & - occipita.? & | condyles & \[
1+1
\] & \(x||x| x\) \\
\hline 2C1LII-70 & 402 & H2 2C II Li & | temporal & - auditory bulla & \(\mathrm{R} \mid \mathrm{I}+1\) & \(x|1| x\) \\
\hline 2C1LII-77 & 409 & H2 2 C II L1 & | post-thor. vertebra & | body \& dorsal arch & \(1 \mathrm{I}+1\) & \(x\) \\
\hline 2C1LII-80 & 412 & H2 2 C II \(\leq 1\) & cervical vertebra, 7th & | whole & I \(\mathrm{I}+\) & \(\times 1\) \\
\hline 2C1LII-90 & 422 & H2 2C II L1 & | mid-thor. vertebra & 1 body & \(\mid 1+1\) & \(|x|\) \\
\hline 2C1LII-95 & 427 & H2 2C II L1 & | metatarsal, 5th & | whote & R | I +1 & \(|x|\) \\
\hline 2C1LII-110 & 442 & H2 2 C II L1 & | ethmoid & | cristá galli & - \(1+1\) & \(|x|\) \\
\hline 2C1LII-11! & 443 & H2 2C II 11 & | thor. vertebra, ist & | whole & \(|1+1| x\) & \[
|x|
\] \\
\hline 2C1LII-195 & 447 & H2 2C II 11 & | radius & distal (no epiph) & L|I| | & \[
|x|
\] \\
\hline 2C1LII-116 & 448 & 422 CII L & radius & | proximal & L | I + & \(|x| \mid x\) \\
\hline 2C1LII-132 & 454 & H2 2C II LT & | radius & distal epiphysis & 1111 & \(\mid x\) \\
\hline 2C1LII-164 & 495 & H2 2C II Li & 1 femur & proximal diaphysis & R | I +1 & x \\
\hline
\end{tabular}

Class: Mammalia
Order: Pinnipedia
Family: Phocidae
Genus/Species: Phoca \(s p\)
Zoologist:

Class: Mammalia
Order: Pinnipedia
Family: Phocidae
Genus/Species: Cystophora cristata
Zoologist: (Erxleben)

Class: Mammalia
Order: Artiodactyla
Family: (not in library) *
Genus/Species: (not in library) *
Zoologist:

Class: Mammalia
Order: Artiodactyla
Family: Cervidae
Genus/Species: Rangifer t. caribou
Zoologist: (Gmelin)

Class: Aves
Order: (not in library) *
Family: (not in library) *
Genus/Species: (not in library) *
Zoologist:

Class: Aves
Order: Anseriformes
Family: Anatidae
Genus/Species: (not in library) *
Zoologist:

Class: Aves
Order: Anseriformes
Family: Anatidae
Genus/Species: Somateria sp
Zoologist:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Cat. & ShNo & Provenience & Bone & Bone Portion. & |SID|Age|Sex| & |PAT|SEA|NAL|CAL|SRM|COM| \\
\hline & & & & & & |--------|--|--|---| \\
\hline 2C4II-63 & 305 & H2 2C I 44 & coracoid & body & \(|\mathrm{R}| \mathrm{I}+1\) & \(|x| x|x|\) \\
\hline \(2 \mathrm{C} 4 \mathrm{LI}-65\) & 307 & \(\begin{array}{ll}\mathrm{H} 2 & 2 \mathrm{C} \\ 1\end{array} \mathrm{~L} 4\) & coracoid & body & \(R \mid I+1\) & \(|x| x|x|\) \\
\hline 204LI-66 & 308 & H2 20.1 .14 & tibiotarsus & proxima] & \(R \mid I+1\) & \(x 1\) \\
\hline
\end{tabular}

Class: Aves
Order: Anseriformes
Family: Anatidae
Genus/Species: Mergus sp
Zoologist:

Class: Aves
Order: Charadriiformes
Family: Laridae
Genus/Species: (not in library) *
Zoologist:
```

